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Abstract
Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost
and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing
and printed electronics including low cost, scalability, non-contact printing and on-demand
customization. Inkjet generates droplets with a piezoelectric dispenser controlled through
frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and
the rapid optimization of stable jetting conditions whilst preventing common problems (no
ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material
consuming trial and error experiments are replaced here with a ML based jetting window. A
dataset of machine and material properties is created from literature and experimental data. After
exploratory data analysis and feature identification, various (linear and non-linear) regression
models are compared in detail. The models are trained on 80% of the data and root mean square
error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input
and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs)
(boosted DTs and random forests) have improved predictive power for drop velocity and radius
with RMSE of 0.39 m s−1 and 2.21 µm respectively. The mean absolute percentage error is 3.87%.
The models are validated with experimentally collected data for a novel ink where no data points
with this ink were included in the training set. Additionally, several classification algorithms are
utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’,
‘no ejection’). Categorization and regression models are combined to improve overall model
prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11
different ink and printing parameters. Different algorithms are analyzed and the optimal
combination of algorithms is identified. It is shown that experimental and literature data can be
combined and an initial dataset is created that other reserachers can build on in the future. ML
enables efficient material and printing parameter selection speeding up the development of novel
ink materials for printed electronics by eliminating jetting experiments that are money, time and
material intensive.

Nomenclature

H shannon entropy
N total number of data points
k number of classes
ci data count in each class
EH shannon homogeneity index
RMSE root-mean-square error
yi target value

yp predicted value
V drop velocity
Vmin minimum velocity for drop ejection
γ surface tension
ρ density
d nozzle diameter
µ viscosity
We weber number
Ca capillary number
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ŷaverage predicted output from weighted
averaging

ŷRF predicted output from random forest
ŷGB predicted output from gradient

boosting
wRF weight of random forest for weighted

averaging
wGB weight of gradient boosting for

weighted averaging
rt total drop radius
r1 primary drop radius
r2 secondary drop radius
P precision
R recall
A accuracy
TP true positive
TN true negative
FP false positive
FN false negative

1. Introduction

As an additive manufacturing strategy for electronics,
inkjet printing is promising due to its advantages such
as room temperature deposition, absence of vacuum
processes, compatibility with numerous cheap, flex-
ible substrates, and large-scale roll-to-roll processing
[1]. Inkjet printing is a digital, maskless process
that allows patterns to be changed on the fly. Vari-
ous microelectronic devices have been inkjet printed,
including transistors [2–5], RFID tags [6, 7], or pass-
ives such as capacitors and inductors [8, 9]. Typical
inkjet dispensing is a drop-on-demand (DoD) oper-
ation that ejects ink droplets from a piezoelectric-
ally driven nozzle (see figure 1(a) for an illustration).
We consider a piezoelectrically actuated dispenser
here that is controlled through pulse voltage, fre-
quency, and timing parameters to convey the neces-
sary droplet generation energy. These parameters
have important consequences for printing consist-
ency. Various inks are used for the printing of con-
ductor, insulator, or semiconductor materials. These
inks have different electrical and material properties
for different applications: mass loading or concen-
tration, particle size, viscosity, density, surface ten-
sion, and acoustic wave speed. All of these ink prop-
erties affect the jetting and the pattern formation on
the substrate. Pattern formation on the substrate can
be further manipulated by changing the properties
of the substrate and the spacing and order in which
drops are deposited [10–17]. Here, we will focus on
the ejection of drops from the nozzle, which is the
first step in the inkjet process. There is only a small
window of material and signal (e.g. jetting voltage,
frequency, or timing) parameter combinations where
there is stable jetting with optimal drop velocity and
volume. Outside of this window, either there is no
ejection from the nozzle or the jetting is unstable, and
the drop breaks up into multiple droplets or satellites
(see figure 1(b)). Drop quality is critical for success-
ful manufacturing using inkjet printing. If the drops

break or jet with satellites, the printed lines or circuit
patterns will have irregular shapes and defects. This
can adversely affect performance, yield, and variabil-
ity of printed devices such as transistors. Therefore,
methods need to be developed to achieve precise jet-
ting.

Several theoretical and experimental studies have
explored the underlying physics and experimental
conditions for droplet generation and jetting charac-
terization. Hoath et al estimated drop speeds from a
range of industrial DoD inkjet print heads, namely
Xaar, Spectra Dimatix, andMicroFab through simple
theoretical models along with numerical simulations
[18]. They concluded that drop speed depends on
fluid properties, nozzle exit diameter, and printer
voltage magnitude, and different types of fluid (New-
tonian, weakly elastic, or highly shear-thinning)
demonstrate linearly increasing drop speed with
voltage above a threshold. Using modeling and
numerical simulations of fluids with varying fluid
properties (surface tension, viscosity), they reported
that the final drop speed is a function of voltage, the
threshold voltage (a function of viscosity), and nozzle
tip area. They maintained persistent frequency, rise
time, fall time, and dwell time throughout the invest-
igation. Liu et al showed that droplet formation is
impacted not only by the fluid properties such as vis-
cosity but also by the driving waveform parameters
[19]. Lai et al carried out computational fluid dynam-
ics (CFD) to study physical phenomena of droplet
ejection. They compared experimental results with
numerical simulations and determined how nozzle
channel curvature affects drop velocity, volume, and
the quantity of satellite drops. In addition, they
demonstrated that nozzle diameter, voltage amp-
litude, or frequency influence drop volume and velo-
city [20]. Reis et al experimented with a piezoelectric
inkjet printer to explore the drop volume and velocity
as a function of voltage and frequency, and summar-
ized drop volume as a function of Ohnesorge number
[21]. Yang et al eliminated satellite droplets by design-
ing nozzles with super-ink-phobicity and ultralow
adhesion with a view to enhancing Rayleigh filament
instability along with speeding up drop pinch-off
from the nozzle [22]. Wu et al inspected the droplet
formation in terms of volume and velocity result-
ing from monopolar drive voltage, frequency, tim-
ing, and compared the results with the acoustic wave
propagation theory. They show that drop velocity and
volume increase with increasing voltage [23]. He et al
created a binary fluid model with time-dependent
actuation to investigate droplet formation in piezo-
electric inkjet printing. They determined that nozzle
wettability and high surface tension improve drop
quality, and increase drop speed [24]. Another com-
mon approach is to determine a jetting window of
conditions under which stable droplets are formed
[25–27]. These windows are often expressed in terms
of non-dimensional fluid mechanical numbers such
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Figure 1. (a) Illustration of the inkjet printing process. A voltage waveform is applied to the piezoelectric nozzle, which ejects ink
droplets and is scanned relative to the substrate to create printed patterns. (b) Stroboscopic images of different jetting regimes.
Ideally, a stable stream of well-defined drops is created. Outside of this desirable regime, the ejected drops can break up into
multiple droplets, or there can be no ejection.

as Z-number,Weber number (We), Capillary number
(Ca), Ohnsorge number (Oh), or Reynolds number
(Re). The stable jetting window is typically bounded
by straight lines defined in terms of some of these
non-dimensional quantities. There are several chal-
lenges with this approach. The boundaries of these
windows are not very accurate, and different studies
in the literature report jetting windows with some-
what different numerical values. This may be due to
the fact that different reports study different print-
able materials that may behave differently. Another
difficulty is thatmost of these non-dimensional num-
bers, except Oh and Z, contain a velocity term. This is
no problem when results are analyzed after perform-
ing printing experiments. However, for a new ink,
the drop velocity is generally not know a priori and
needs to be determined experimentally as a function
of printer parameters. Therefore, there is a need for
a method that can predict jettability, drop velocity,
drop volume, and optimal printer parameters for a
new ink.

Machine learning (ML) is a technique that can
potentially forecast drop velocity and volume as well
as categorize jetting type. The strength of ML is that
it can capture complex dependencies between a large
number of input parameters and a desired output.
This setsML apart from the above reviewed analytical
models. Whilst these models are powerful in terms of
physical insight, they are limited in terms of quantit-
ative predictions for a large and complex parameter
space. In many cases, ML is a blackbox approach that
does not give insight into how a model arrived at its

answer; however, some algorithms such as decision
trees (DTs) can also be interpreted to get insights into
the underlying processes. Using ML, is motivated not
only in terms of deriving a more accurate jetting win-
dow but also saving experimental time and cost [28].
Recently, ML has been applied to the design of bio-
inks for a different printing method, extrusion print-
ing of cell-laden gels [29, 30]. For inkjet printing,
Wu et al have used a data-driven approach to pre-
dict drop speed and volume of a polymer ink. This
work predicts jetting from only three signal paramet-
ers (voltage, pulse duration, and rise time) [31]. These
features are not sufficient if the material is varied
as they do not include fluid properties such as vis-
cosity, density, or surface tension. To create a more
general model, a larger and more complete dataset
is key. CFD simulations have been used to generate
more training data with limited experimental valida-
tion [32, 33]. However, there is a shortage of experi-
mental learning-based studies on printing andmater-
ial attributes during inkjet printing at themicrometer
scale.

Here, we demonstrate a more comprehensive ML
approach that takes various ink and printer paramet-
ers into account (11 features in total). The model is
trained on a range of inks to learn general depend-
encies using experimental data from our own lab
and from literature. For previously untested inks, this
learning-based approach can help select optimum
ink material properties and identify the operational
region of the nozzle signals to achieve the desired drop
volume and velocity.
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Figure 2. (a) Overall workflow of the data-driven inkjet optimization scheme. (b) Workflow of the image processing process to
extract drop radius and velocity from experimentally collected stroboscopic drop images for each set of input features.

2. Methodology

The problem was divided into three parts: (a)
collect data experimentally with different printing
conditions and dissimilarmaterials, as well as compile
literature data, (b) process experimental image data
and explore feature importance, then relationships,
(c) construct and validate predictive models for drop
formation and finally assemble results. The chart in
figure 2(a) represents the workflow. Lab image data-
sets of ejected drops are processed through an image

processing pipeline, as shown in figure 2(b), to cal-
culate the experimental drop velocity and radius. As
the size of the dataset is of critical importance for
ML, we combined our experimental data with lit-
erature data. The laboratory dataset was cleaned to
exclude outliers and duplicates before merging the
datasets. Then, feature relationships are extracted.
For drop velocity and radius prediction, the same
input features are pre-processed, sampled, and differ-
ent forecasting models are applied to the training set
with hyperparameter optimization. The optimized
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trained models are saved and tested on the test
data.

2.1. Parameter variation
Data collection, identification of essential input fea-
tures and target output are the preliminary steps for
implementing a ML model. Input data assessment
was completed in two stages: varying material and
machine parameters. As a function of these inputs,
the model predicts two continuous outputs (drop
velocity and drop radius) as well as one discrete out-
put (jetting quality with three levels: ‘single drop’,
‘no ejection’, or ‘multiple drops’). In the case where
multiple drops are ejected simultaneously, the biggest
drop is referred to as the primary drop, and the next
biggest drop is termed as the secondary drop.

The critical machine parameters that are con-
sidered for successful inkjet printing are frequency,
dwell voltage (Vdwell), echo voltage (V echo), dwell time
(tdwell), echo time (techo), rise time (trise), fall time
(tfall) and nozzle diameter, as shown in figure 1(a).
Each of these parameters has a different effect
[34–37]. The input waveform might consist of uni-
polar, bipolar, or sinusoidal pulses; nonetheless, the
bipolar trapezoidal signal creates more stable drops.
The signal waveform has a DC offset voltage level,
which is called idle voltage, and it is set at zero. Other
than this DC voltage level, the positive and negative
pulse amplitudes have essential roles to play. The pos-
itive voltage amplitude is called dwell voltage, and the
time required to reach this amplitude from the idle
voltage is called the rise time, providing an interval for
the initial fluid expansion. The negative voltage amp-
litude is named echo voltage. The time duration of the
falling edge of the dwell pulse is labeled as fall time,
which determines fluid compression and drop dis-
charge time from the nozzle. Thus, echo voltage and
its timing adjustment can potentially reduce unstable
drop formation. Durations of the positive and negat-
ive voltage pulse plateaus are termed as dwell and echo
time and need to be large enough to allow for pressure
wave propagation through the dispenser. Conven-
tionally,Vdwell =−V echo and tdwell = 2× techo to allow
pressure wave optimization within the nozzle [37].
The collected literature data includes a wide range
of values for Vdwell, V echo, tdwell, and techo. Density,
viscosity, and surface tension were varied as material
parameters affecting material printability. For the lab
data collection, the feature space spans the following
range:

(a) frequency: 500–2000 Hz in steps of 500 Hz;
(b) rise time: 1–35µs (at two different voltages (30V,

35 V)) in steps of 3 µs;
(c) fall time: 1–35 µs (at two different voltages (30 V,

35 V)) in steps of 3 µs;
(d) dwell time: 3–30 µs (at two different voltages

(30 V, 35 V));

(e) echo time: 3–70 µs (at two different voltages
(30 V, 35 V));

(f) voltage: 0–80 V in steps of 5 V;
(g) echo voltage:−60 to 0 V in steps of 5 V;
(h) viscosity: 0.59–15.26 cP;
(i) surface tension: 21.22–53.04 mN m−1;
(j) density: 786–1425 kg m−3;
(k) nozzle diameter: 60 µm (literature data varied

from 25 to 120 µm).

There are some physical restrictions for choos-
ing the feature space. Materials parameters have been
chosen to lie within the specifications of common
inkjet nozzle manufacturers, Microfab and Fujifilm
Dimatrix. There is a range for the printer parameter
values (1–7) beyond which the nozzle does not work.
When the frequency is above 2500Hz or rise time, fall
time, or dwell time exceed 40 µs, the jetting becomes
unstable, and in most cases, the drop velocity and
radius are notmeasurable. For a unipolar pulse, dwell
voltage can go up to 80 V. In the bipolar case beyond
45 V, mostly unstable jetting is produced with echo
voltage below −80 V. Considering all these physical
restrictions, the above range was selected for collect-
ing the lab data.

2.2. Experimental
The experimental data points were collected, varying
the identified attributes as discussed in section 2.1,
and merged with corresponding literature data
points.

2.2.1. Data collection
Six solvents were used: triethylene glycol monoethyl
ether (TGME), 2-propanol (IPA), 1-hexanol, toluene,
methoxy ethanol, and a 50% ethylene glycol–water
mixture. All solvents were reagent grade purchased
from Sigma–Aldrich. Silver nanoparticle ink (ANP
DGP 40LT-15C) with the major solvent TGME was
bought from Advanced Nano Products, Co., Sejong,
Korea. To have a variation in material properties,
three binary mixtures of TGME and silver ink were
prepared with 70%, 80%, and 90% silver ink con-
centration, respectively. In total, data was collected
for six different solvents and three different concen-
trations of silver ink for model training and test-
ing. An ink consisting of graphene oxide (GO) sus-
pended in water and ethylene glycol was used for
evaluation of the models with no data points from
this ink being included in training. Jettability was
tested using a custom-built inkjet printer using the
Microfab JetDriveTM III electronics (Microfab Tech-
nologies, Inc., Plano, TX) controlled with a custom
LabView program. The nozzle diameter was 60 µm
(MJ-ATP-01-60-8MX, Microfab Technologies, Inc.,
Plano, TX). The nozzles can handle only low-viscosity
materials with viscosity below 20 cP and surface ten-
sion between 20 and 50mNm−1. Viscosity wasmeas-
ured with a rheometer (microVISC-m, RheoSense
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Inc., San Ramon, CA). All the measured fluids are
Newtonian. Viscosity was measured at different shear
rates between 100 s−1 and 1000 s−1, and viscosity was
constant with shear rate. Surface tension was meas-
ured using the pendant drop method with a drop
shape analyzer (FM40, Krüss Scientific, Hamburg,
Germany). Density was measured using a precision
balance. The inkjet nozzle was prepared by cleaning
with acetone, IPA, and de-ionized (DI) water in a
sonicator. A strobe light-emitting diode (LED) and
camera are arranged co-linear with the nozzle and
ejected drops to capture bright, clear, and focused
drop images without blurring. The strobe frequency
is equal to the drop ejection frequency. For each
solvent, the same jetting setupwas tested twice on two
different dates.

Additionally, published data for six materials
(alumina suspension in hydrocarbonmedia, paraffin,
DI water, ethylene glycol, butyl carbitol, and sil-
ver nanopowder) were collected from literature and
Microfab technotes [21, 23, 35, 36, 38]. The collected
literature data consists of different nozzle sizes and
printers from different manufacturers for different
materials, but contains only velocity information, not
drop radius. Literature data was collected through the
web-based image extraction tool WebPlotDigitizer.

Finally, 769 lab data points and 2176 literat-
ure data points [21, 23, 35, 36, 38] were com-
bined. The full dataset as well as the Python code is
available as supplementary material available online
at stacks.iop.org/FPE/7/015009/mmedia. The version
numbers of Python and the used libraries can be
found in the supplementary information.Histograms
of the collected lab data are displayed in figure 3(a).
These histograms are useful as they indicate not
only the range for each feature but also the jettable
region using different colors. For instance, the voltage
histogram shows that voltage is varied from 0 to
80 V. Below 10 V, jetting was not possible. This data
also shows the obtained velocity and radius ranges.
The observed radius values lie approximately within
25–55 µm, which corresponds to the nozzle radius
30 µm, but also depends on the other features that
are varied at the same time. Figure 3(b) shows the
distribution of the collected lab data points between
the three different drop-ejection classes. Shannon
entropy, known as Shannon Diversity Index in stat-
istics, is used here as a measure of class balance using
equations (1) and (2) [39]. For the collected lab data
with a set of 769 data points in three classes (‘mul-
tiple drops’ (346 points), ‘single drop’ (217 points),
and ‘no ejection’ (206 points)), the entropy is com-
puted with equation (1) where k= 3:

H=−
k∑

i=1

ci
N
log
( ci
N

)
(1)

where n is the total number of data points, k = 3 is
the number of classes, and ci is the size or data count

in each class. The Shannon homogeneity index EH is
computed with equation (2)

EH =
H

logk
. (2)

The value of EH is zero for a very unbalanced data-
set, and for balanced data, the value should be close to
1 [40]. For our lab dataset with 769 data points, the
computed value of EH is 0.97. Therefore, the dataset
is considered to be close to balanced. The remaining
imbalance is due to the fact that the ‘multiple drops’
class corresponds to a larger portion of the parameter
space because most unoptimized printing conditions
lead to non-ideal jetting.

2.2.2. Image processing
All of these features are varied within their range
as described in section 2.1, and the resulting drop
images are captured with a camera using a VC500
video capture device with EZ-grabber version 3 soft-
ware (Diamond Multimedia, Canoga Park, CA) with
720× 480 pixels resolution. One pixel is equivalent to
less than 1 µm. While capturing the image, a strobe
LED illuminates the drops in flight. The generated
drops are around 60 µm in diameter, and in the cap-
tured images, the drop diameter ranges from 40 to 80
pixels. The measurement error due to the one-pixel
resolution limit is ±5% for the diameter and ±15%
for the drop volume [41]. For drop radius measure-
ment, the delay is adjusted to obtain uniform round
shaped drops without satellites. Figure 2(b) shows the
image processing pipelines for the velocity and radius
measurements. All the collected images are processed
in OpenCV for Python performing RGB to gray-
scale conversion, noise elimination, binary threshold-
ing, automatic cropping, and scaling to remove the
nozzle area and keep only the generated drops. For
radius measurement, SimpleBlobDetector is adopted
from OpenCV, which works on thresholded binar-
ized images (1: white background, 0: black drop fore-
ground). In each binarized image, connected black
drop pixels are grouped and form blobs. The centers
of the blobs (drops) are computed, and blobs closer
than the minimum threshold distance are merged.
Finally, the centers and radii of the merged drops are
computed and returned. For drop velocity calcula-
tion, two consecutive images of the same drop with
50 µs delay are used. After edge detection, the low-
est bottom point of each drop is measured. The dis-
tance traveled by each drop is calculated from the dif-
ference in the position of the bottom point in two
subsequent images and is divided by 50 µs to find the
drop velocity [42].

2.2.3. Data processing
Drawing insights from data through ML requires
careful data collection, pre-processing, and model
selection. Data as the core of anyML algorithm needs
to be in the form that the algorithm can understand
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Figure 3. Input features and target distribution of the collected lab data. (a) Data distributions model input features (dwell time,
voltage, rise time, fall time, frequency, echo voltage, viscosity, density, surface tension, echo time) and measured outputs (drop
velocity, radius) displayed as histograms with y-axis representing the frequency of attribute occurrence. Different color bars
represent different observed jettability regimes. (b) Target class balance of three jettability categories: ‘multiple drops’, ‘single
drop’, and ‘no ejection’.

and can reveal meaningful patterns from. Here, the
1st four steps of the CRoss-Industry Standard Pro-
cess model for the development of ML applications
are followed for all data management [43]. First, as a
process of data understanding, data engineering was
carried out to convert raw literature data and lab data
into a common structured form (CSV source) forML.

Literature data is unstructured as it is a combina-
tion of documents, graph images, and table images.
The collected lab data is also initially unstructured
as it is collected as images. Literature data sources
have been parsed, joined, and put into a tabular
form. The unstructured lab image dataset is passed
through the image processing algorithm as described
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in section 2.2.2 to measure the target drop velocity
and radius values. The two sets of data are merged
into the final structured CSV format. Second, a data
processing operation is performed on the merged
dataset. Data is cleaned to remove data points with
outlier drop velocity and radius, to ensure that each
row represents a unique printing condition, and to
ensure that each column represents a distinct feature.
Finally, we have 769 lab data points and 2176 literat-
ure data points. Feature engineering is implemented
to understand the features and format them as expec-
ted by the ML model. Some missing values such as
secondary drop radius and velocity, which occur in
the case of ‘multiple drops’, are imputed as zero for
the ‘single drop’ and ‘no ejection’ cases. Outliers are
removed using Scikit-learn [44]. At first, 17 input fea-
tures (material name, waveform type, printer name,
material mass loading, dwell time, echo time, rise
time, fall time, dwell voltage, echo voltage, frequency,
density, viscosity, surface tension, wave speed, nozzle
orifice diameter) and three targets (drop velocity,
radius, jetting category) are collected. Then, irrelev-
ant feature columns are dropped. Material name and
material mass loading are represented by the mater-
ial parameters density, viscosity, and surface tension.
Waveform type is represented by the echo voltage
value being zero for a unipolar waveform, and neg-
ative for a bipolar waveform. Printer name is rep-
resented by other printer attributes such as voltage,
frequency, timing and nozzle diameter. The quality
of each numerical input feature column is further
improved through data standardizing (normalizing)
and clipping outliers. The categorical target output
(three jetting categories) is transformed to numer-
ical representation through one-hot encoding. Third,
the training and test evaluation subsets are selected
through random sampling from the merged shuffled
dataset. ML data models have been developed to
create meaningful insights and forecast drop velo-
city, radius, and drop type using ensemble learning.
The best performing ensemble algorithms are selected
based on the RMSE for test data given by equation (3).
Fourth, the algorithm performance is evaluated with
untested data

RMSE=

√√√√( 1

N

N∑
i=0

(
yi − yp

)2)
(3)

where Np = total number of data points, yi = target
value, yp = predicted value.

2.3. Model architecture
Several different ML architectures were tested to
quantitatively predict drop radius and velocity as
well as classify the jetting regime. The most prom-
ising architectures are briefly discussed in this section.
More detailed descriptions can be found in the sup-
plementary information.

2.3.1. Decision tree (DT)
DT is a white-box supervised learning procedure for
discrete and continuous prediction tasks, which will
be used here to forecast inkjet printing by learning
simple decision rules from the printer and mater-
ial features. In DT, the dataset is progressively par-
titioned at each node based on a thresholding cri-
terion until it reaches a decision. Because of their
simple if-then-else logic construction, decision rules
are interpretable, and prediction cost is logarithmic-
ally dependent on the number of training samples.
Overfitting is suppressed by optimizing the min-
imum data sample size at each node and maximum
tree depth. The Scikit-learn classification and regres-
sion trees (CART) adaptation [44] was implemen-
ted with binary trees using the 11 features and the
largest information gain thresholding at each node
[45, 46].

2.3.2. Random forest (RF)
RF is an ensemble learning technique that builds
N uncorrelated base learners (trees, linear models)
by bootstrapping training data into different sub-
sets [44]. RF improves variance while aggregating
uncorrelated trees through averaging and avoids over-
fitting [47]. Being an average of multiple DT is more
immune to training noise as opposed to a single
DT. During each sampling, r(=√t) arbitrary fea-
tures are chosen out of all t features to trade-off
the sampling variance and reduce the correlation
between the learners [48]. As shown in figure 4(a),
the RF regressor fits N DTs individually on bootstrap
sampled subsets of the data and aggregates the trees
through majority voting (for classification) or aver-
aging (for regression). It took 0.517 s to train the
model with grid search CV cross-validation to find
the optimal number of treesN, maximum number of
features r, and minimum number of samples in a leaf
to set the stopping rule.

2.3.3. Gradient boosting (GB)
GB [49] was adopted here for regression and cat-
egorization tasks using Scikit-learn XGBoost [44]. As
shown in figure 4(b), boosting fits N DTs simul-
taneously on the training set and builds a recursive
model to minimize the loss function RMSE. Cross-
validation training of the GBmodel with constrained
(number of trees, tree depth, learning rate) optimiz-
ation took 0.512 s. GB utilizes CART as base learners,
as described in section 2.3.1. The maximum depth
of each base learner tree was chosen through grid
search CV.

2.3.4. Merged regressors and classifiers
A problem of applying tree-based predictors occurs
in the case of zero output values, which can be erro-
neously predicted as small nonzero values. These zero
values for drop velocity and radius correspond to the
case where no drop is ejected. The model needs to
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Figure 4.Model descriptions. (a) Random forest (RF). (b) Gradient boosting (GB). (c) Merged regression and classification
model for velocity and radius prediction.

learn the zero to nonzero transition region. This is
achieved by combining the regressors with a classi-
fier. The classifier outputs a ‘0’ value when no drop is
ejected and ‘1’ when one ormultiple drops are ejected
from the nozzle. The final output is obtained by mul-
tiplying the velocity or radius output from different
regressorswith the output from the classifier as shown

in figure 4(c). Three different classifiers were com-
pared. A three-layer deep neural network (DNN) hav-
ing 200 nodes in the 1st and 2nd hidden layer with
‘relu’ and ‘tanh’ activation function respectively and
40% dropout in each was deployed using the ‘Keras’
Python package [50]. A simple DT classifier with
depth three and a K-nearest neighbor classifier with
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two neighbors were also constructed and perform-
ances were compared.

3. Results and discussion

3.1. Model comparison and polynomial fitting
The final dataset consists of about 3000 data points
pre-processed through a Scikit-learn pipeline [44]
of normalization, scaling, categorical encoding, and
improper and missing value elimination. Eleven
important features (pulse duration, echo time, rise
time, fall time, frequency, nozzle orifice diameter,
voltage, echo voltage, density, viscosity, and surface
tension) are selected through applying two different
feature selection classifiers, GB and RF. In total, we
trained 14 regressive models: 11 linear models (lin-
ear regression, ridge, ridgeCV, lasso, lassoCV, elastic
net, Bayes ridge, orthogonal matching pursuit, Theil-
Sen, RANSAC,Huber regressor) and three non-linear
models (DT, RF, GB) [44]. The models were trained
with 80% of the complete dataset and the most
important 11 features. The RSME (equation (3)) for
20% test data shows that simple linear relationships
between the inputs and output do not give a good pre-
diction and have a large RSME (see figures 5(a) and
S1 for the corresponding R-squared values). Rather,
non-linear regressive models, particularly DTs, RF,
and GB, model the underlying physics with less error.
Therefore, after deciding to implement non-linear
regressive models, we focused on these best three
models and also implemented averaging, weighted
averaging, and majority voting with Scikit-learn [44]
to minimize the RMSE of both drop radius and velo-
city prediction. The data were classified into three
jetting regions: ‘no ejection’, ‘single drop’, ‘multiple
drops’.

It was recognized that pulse duration, rise time,
fall time, and frequency follow polynomial trends,
while the others (nozzle diameter, viscosity, dens-
ity, surface tension, voltage, echo voltage) exhibit lin-
ear trends. The polynomial degree that best fits the
data without overfitting is determined by plotting
the RSME as a knee curve in figure 5(b). Around
5◦, there is a sharp decline in the error rate showing
that 5◦ polynomial fitting most accurately describes
the feature pattern relationships. Some of the other
mentionable relationships from the collected data are
displayed in figures 5(c)–(g), where dots represent
experimental results, and solid lines are linear and
polynomial fitting. Some important trends can be
observed in these plots. Drop velocity and volume
both show linear relationships with dwell and echo
voltage while keeping other parameters unchanged,
but maintain a polynomial relationship of 5th degree
with the dwell time. Drop volume is plotted in these
graphs rather than drop radius to highlight this
linear relationship, which would be more difficult

to interpret if drop radius was plotted. Figure 5(c)
shows different slopes of drop volume with voltage
depending on the pulse type and whether echo or
dwell voltage is varied: approximately 65 pL V−1 for
unipolar pulses (echo voltage set to zero), approxim-
ately 75 pL V−1 for bipolar waveform (echo voltage
with a negative value), and approximately 55 pL V−1

for echo voltage variation at a fixed dwell voltage.
Similar trends can be observed for drop velocity (see
figure 5(d)). Figure 5(e) shows the minimum voltage
value for creating drop ejection while other para-
meters are kept at a fixed value of dwell time 15 µs,
rise and fall time 3 µs, frequency 1000 Hz, and echo
voltage −30 V. As shown by Duineveld et al [51], the
minimumvelocity (Vmin) required for creating a drop
can be approximated by equation (4):

Vmin =

√
4γ

ρd
(4)

where γ is surface tension, ρ is density and d is
nozzle diameter. The calculated minimum velocity of
each of the materials is plotted on the y-axis of the
graph in figure 5(e), while the minimum required
voltage value to create this minimum velocity was
extrapolated from the linear fitting voltage vs velo-
city curve for bipolar pulses shown in figure 5(d). For
TGME and silver, this velocity is found to be lower
than for the low-viscosity materials. The measured
minimum drop velocity (marked as the bar) leaving
the nozzle in the lab setup is somewhat lower than
the calculated result from equation (4) (marked as
a circle) for all the materials highlighting the limit-
ation of a simple analytical model. Futhermore, the
required voltage cannot be predicted by the simple
equation. Figure 5(f) shows that for increasing voltage
(30–35 V), there is a peak shift in optimum dwell
time. The maximum ejected drop volume and velo-
city shift towards the right for each of the materials.
For low-viscosity materials, two peaks can be seen at
different pulse dwell times. For example, IPA and hex-
anol show one small peak at 13 µs or 11 µs, and the
other one at 27 µs or 25 µs respectively for 30 V.
When rise and fall times are varied together by the
same amount, the output velocity and radius main-
tain polynomial shapes (see figure 5(g)). Drop velo-
city and volume behavior of different materials are
different when subject to the same signal paramet-
ers due to their differences in viscosity, surface ten-
sion, and density. It is not straightforward to predict
drop velocity and volume from thesematerial proper-
ties only. From the above results, it is evident that the
prediction of jetting is a multi-dimensional problem.
The underlying behavior cannot be easily captured by
simple linear or polynomial fitting, especially without
a very large dataset. In the following sections, more
sophisticated predictive methods are applied to the
problem.
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Figure 5. (a) Comparison of test results between different algorithms for drop velocity and radius prediction. (b) Polynomial
order optimization to predict output velocity. (c) Unipolar, bipolar, and echo voltage exhibit linear relations with drop volume.
(d) Unipolar, bipolar, and echo voltage exhibit linear relations with drop velocity. (e) The minimum velocity of ejection for
different materials, experimental and calculated. (f) Polynomial relation between dwell time and drop volume. (g) Polynomial
relation between rise/fall time and drop volume.

3.2. Drop velocity prediction
To predict the drop velocity from the machine and
material parameters, the three most promising mod-
els (DT, RF, and GB) are deployed. Based on indi-
vidual performance, ensembles of DT, RF, and GB
models are arranged through majority voting or
weighted averaging to achieve the best performance.
Tree-based ML models have a number of paramet-
ers to fine-tune through a search algorithm like

Scikit-learn GridSearchCV [44]. Grid Search CV
makes use of k-fold cross-validation while exploring
the best model parameter values to minimize velo-
city prediction errors. The hyperparameter values are
saved and used later on to create the best estimator
representative of each model. DTs are the most ele-
mentary model with fewer parameters to optimize.
DT performance is optimized with maximum depth
selection through GridSearchCV taking 0.171 s. A
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Figure 6. Drop velocity prediction interpretation. (a) Example DT for velocity prediction. (b) Bias and feature contributions for
test data from [38] for GB.

pruned depth value of 10 makes the trees explain-
able and understandable as shown in figure 6(a). If
it had not been optimized, the tree nodes would have
expanded until all the leaves contain fewer than the
minimumnumber of samples causing overfitting. For
RF, 12 trees of depth 14 are selected through Grid-
SearchCV with an average time utilization of 0.692 s.
In this case, RF arbitrarily chooses a subset of the 11
features for final prediction with. The constraints for
GB are selected through GridSearchCV: number of
trees (10), maximum tree depth (14), learning rate
(0.5), column sampling when constructing each tree
(0.8), subsampling ratio of the training set to prevent
overfitting (0.8), minimum child weight in each tree
(2). Cross-validation training of the optimized GB
model combines inputs from all ten trees for the final
velocity decision through a voting process.

Figure 6(a) illustrates how the DT model output
can be interpreted. Themaximumdepth is set to three
for better visualization. This example shows the echo
voltage root node as the initial point for forecasting.
The next split adds or subtracts a term to this sum,
depending on the next node in the path. For each
test data point, the path that matches the conditions
is tracked, and an ultimate regression outcome is
obtained. The output can be written as equation (5):

TestPrediction = Bias +Root to decision node path

contributions. (5)

It is evident in figure 6(a) that some features (echo
voltage, viscosity) are utilized in multiple splitting
stages, and so they are added as contributions several
times. The value indicates the predicted velocity in
each node. For instance, if the tree is used to predict
the velocity for a test set of hexanol with echo voltage
−30 V, density 815 kg m−3, pulse duration 21 µs,
voltage 30 V, frequency 1000 Hz, viscosity 4.59 cP,
surface tension 25.73 mN m−1, and nozzle orifice
diameter 60 µm; it will follow the marked green path
and will result in a velocity prediction of 3.13 m s−1

with a residual of (4.08 − 3.13) = 0.95 m s−1,
which is close to the RMSE of this simple tree
model. The total contribution of viscosity is
(2.28 − 2.05) + (3.13 − 2.9) = 0.47 m s−1. The
bias is 2.60 m s−1, the contribution from fall time is
0.34 m s−1, and the contribution of echo voltage is
−0.27 m s−1. Therefore, the overall prediction is the
sumof all feature contributions and the bias equalling
3.13 m s−1.

GB constructed with ten weighted trees has a
much better overall RMSE of 0.398 m s−1 than a
single DT with RMSE of 1.445 m s−1. Weights are
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set for each tree output prediction, and an average is
taken over them to calculate the final predicted velo-
city. Each of the booster trees has a maximum depth
of 14. Each of the ten trees is not a very good predictor
on its own compared to the aggregated prediction
from the ten trees. Individual predictions of each
booster tree can be explained by decomposing the
prediction into the bias and contributions of differ-
ent variables as shown in figure 6(b).

The optimized booster was used to predict the
drop velocity of new data from the literature for the
drop velocity of a silver nanopowder ink with dif-
ferent pulse amplitudes [38]. None of the data from
this paper was part of the training dataset. Two pulse
amplitude values (36 V and 44 V) were tested with
this model. The predicted velocity is very close to
the experimental velocity. Each prediction can be
expressed as a sum of feature contributions and bias
from all the trees. With the help of the elif5 package
code of Python, the decision path of the best trees
for two test data points from [38] is broken down
in figure 6(b). It shows that all the boosters predict
a velocity of 2.195m s−1 while the experimental velo-
city was 2.0 m s−1, and the accuracy is 90.25%. The
largest contributions for this particular test result are
from echo voltage, voltage, viscosity, and surface ten-
sion. Bias is the mean velocity value of the training
dataset. GB trees make dissimilar contributions for
different datasets, although the bias (4.854 m s−1)
remains the same for all. The right side of the table
shows the aggregated boosting estimation for voltage
44 V as 4.468 m s−1 with an accuracy of 91.12%. For
these two different test data points, the feature con-
tributions are different as they are arranged based on
their overall impact. For both tests, there is a notice-
able impact of voltage, echo voltage, pulse duration,
and nozzle orifice diameter. Figure S2 depicts the top
20 rules for velocity prediction extracted from the
ten boosting trees by the Molnar rule fit algorithm
[52]. These rules aremultiplied with their coefficients
and summed to get the final prediction result out of
the features. The voltage, nozzle orifice diameter, and
pulse duration constitute the most important predic-
tion rules. The importance column shows the per-
centage of data being affected by the corresponding
rule.

The three tree-based regressive models exhibit
difficulty in predicting zero values. For some attribute
values, there is a distinct region where no drop ejec-
tion occurs. Velocity is zero and the model perform-
ance deteriorates. This ‘no ejection’ region can be sep-
arated from the jetting region (‘single drop’, ‘multiple
drops’) with a simple DT classifier. The intermedi-
ate regression values are multiplied with the classi-
fier output, as in the algorithm shown in figure 4(c).
The final predicted velocity multiplied with the clas-
sification result exhibits lower RMSE. To confirm that
the predicted output agrees well with the real exper-
imental results, the predicted output from the GB

model was plotted against experimental data. It is
clear that predicted velocity and test velocity agree
well (see figure 7(a)), although there is some resid-
ual prediction error of 0.398 m s−1. To further val-
idate the GB model, it was tested with experimental
velocity data for a graphene oxide ink that the train-
ing dataset contained no data points for. The ink has
viscosity 8.7 cP, surface tension 57.96 mN m−1, and
density 1232 kg m−3. The predicted velocity displays
a linear trend with voltage in good agreement with
the experimental data (see figure 7(b)), and the dif-
ference between the measured and predicted velo-
city is within the mentioned RMSE (0.398 m s−1) for
the GB model. This is an important test for practical
inkjet applications of the model because it means the
behavior of new inks can be predicted without costly
experiments.

The test results from the tuned simple DT, RF,
and GB models in terms of RMSE are 1.55 m s−1,
0.45 m s−1, and 0.398 m s−1, respectively as shown
in figure 7(c). The DT prediction result is clearly
the worst as the test and train RMSE are very large.
RF is much better than DT as it selects features
randomly during prediction. This means that it is
less likely to under or overestimate the output for
new untrained datasets. The additional regularization
term and weight updates of GB help to avoid over-
fitting and result in the lowest test RMSE among these
three models. The two best models (RF, GB) can be
further enhanced by the implementation of simple
ensemble methods: voting, averaging, and weighted
averaging. In case of voting, the test predictions from
RF and GB are regarded as votes and majority voting
was adopted to get the final prediction output. The
voting regressor module of Scikit-learn [44] is used
as the voting model. For averaging, the training and
test results from the two regressors are averaged sep-
arately to calculate training and test RMSEof the aver-
aging model. For weighted averaging, three weight
optimization techniques are deployed to minimize
the final prediction RMSE: neural network (NN),
RMSEminimization, and RF. The predicted final out-
put (ŷaverage) is calculated using equation (6) with the
RF and GB test prediction results (ŷRF and ŷGB) and
their optimized weights (wRF and wGB):

ŷaveraging = wGB × ŷGB +wRF × ŷRF. (6)

For NN weight optimization, the number of hid-
den nodes was set to three, and the output node was
set to one. The test prediction results from the two
base models are fed through the input layer, and the
prediction from the output layer is compared against
the test dataset to calculate RMSE. For RMSE min-
imization, the RMSE (from equation (3)) is minim-
ized using sequential linear-quadratic programming
(SLQP) as an iterative optimization method for non-
linear problems or the Nelder–Mead method. The
resulting weights from different weight optimization
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Figure 7. Velocity prediction models comparison. (a) Predicted velocity vs. real drop velocity for the DT drop classification (0/1)
result multiplied with the GB velocity regression result. (b) Validating GB with new graphene oxide ink. The training dataset
contained no data points from this ink. (c) Test RMSE comparison of different weight optimization models.

Table 1. Optimized weights for calculating average of different
models according to equation (6). Units of velocity RMSE are
m s−1.

Model

RF weight
(wRF) (test

RMSE 0.455)

GB weight
(wGB) (test
RMSE 0.398)

RMSE
score

RF 0.444 0.556 0.354
NN −0.528 0.794 3.86
SLQP 0.433 0.567 0.338
Nelder 0.527 0.475 0.316
Simple averaging 0.5 0.5 0.326

techniques are shown in table 1. Generally, the dif-
ferent algorithms assign a larger weight to GB than
RF because GB has a lower test RMSE. NN performs
poorly in selectingweights. Averaging and voting have
similar RMSE of around 0.33 m s−1, which is better
than GB or RF on their own.

3.3. Drop radius prediction
Drop radius is a better quantitative estimation of
drop size than volume. It was measured through a

graph-based blob edge detection algorithm from the
processed drop images. For the regressive estimation
of drop radius, the same 11 features were used as
for drop velocity (voltage, echo voltage, echo time,
rise time, fall time, pulse duration, nozzle diameter,
frequency, viscosity, density, and surface tension). A
challenge was that our lab data consists of primary
and secondary drop volume. Here, primary denotes
the main droplet. The secondary drop volume occurs
due to drop breaking or multiple unwanted drops
such as satellites as shown in figure 1(b). The volume
was converted to total radius, which is the radius of an
equivalent drop with the same volume as the primary
and secondary drops combined. This radius repres-
ents the total fluid volume ejected from the nozzle
irrespective of whether the jet subsequently breaks
up into multiple drops. The information that there
are multiple drops is stored as a categorical variable
for classification and not determined by the radius
or velocity value used for regression. The total drop
radius (rt) is calculated from the primary (r1) and sec-
ondary (r2) drop radius using the following formula:
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Figure 8. Drop radius prediction results. (a) Training and test RMSE for total and primary radius predictors. (b) Predicted total
drop radius vs real total drop radius. (c) RF tree interpretation for primary radius prediction. (d) Validating RF drop radius
model with new GO ink data. The training dataset contained no data points for this ink.

rt =
(
r31 + r32

)1/3
. (7)

Secondary drop information is missing in the lit-
erature data as it only contained ‘single drop’ and
‘no ejection’ data. Finally, the lab and literature data-
sets were merged. Like velocity estimation, ten gen-
eral models were fitted and tested on the dataset to
identify whichmodel is best for the prediction of total
and primary drop radius. Again, the radius prediction
is improved for the ‘no-ejection’ case by multiplying
the results from CARTs, as shown in figure 4(c) sim-
ilar to the velocity prediction model. It was found
that the secondary drop radius is erratic and does not
maintain an interpretable relationship with the signal
and the material parameters.

Total and primary drop radius exhibit good train-
ing and test prediction results with three tree-based
regressors (DT, GB, RF) as shown in figure 8(a).
Weighted averaging was also adopted for the two
best models (GB, RF) as described by equation (6).
Weight optimization by SLQP is the best with the low-
est total radius RMSE of 2.91 µm. Unlike velocity,
most of the weight is applied to GB (0.85) and the
rest to RF (0.15). This weighted averaging is effect-
ive for total drop radius estimation. However, major-
ity voting among GB and RF gives better results for
primary drop radius prediction. The test and train
RMSE of each of the models are shown in figure 8(a).
Figure 8(b) shows good agreement between the real

and predicted total drop radius. It can be instructive
to understand how RF has arrived at its radius pre-
diction. RF is composed of a number of DTs, and it is
quite impossible to comprehend the regression out-
put by examining each tree. Each radius prediction
can be decomposed into contributions from each fea-
ture and bias (mean radius of the training dataset).
A sample primary drop radius prediction is shown
in figure 8(c). The Python package tree interpreter
is used for feature contribution interpretation. For
every test data point, the contribution of each fea-
ture is not fixed; rather it changes according to the
feature values depending on the decision path that
is being traversed along each tree. The results show
that viscosity, echo voltage, fall time and surface ten-
sion are the most important features affecting drop
radius. For a sample test data point, the bias and
feature contributions are broken down in table S1.
There is a clear difference between velocity and radius
prediction in terms of feature contribution. While
for velocity the important contributions are from
voltage, echo voltage, pulse duration and nozzle ori-
fice diameter for this test sample, primary radius pre-
diction depends on viscosity, echo voltage, fall time
and surface tension values. Again, the radius pre-
diction model was evaluated with untested graphene
oxide ink data. The training dataset contained no
data points with this ink. The results are displayed
in figure 8(d). The predicted radius of the GO ink
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Table 2. Comparison between several jetting classifiers.

Model name Accuracy

K neighbors classifier 78.23%
Decision tree classifier 83.87%
Neural network 91.94%

Figure 9. Jetting classification confusion matrix for DNN.

maintains a linear relationship with the test voltage
with a small residual error from the experimentally
measured radius.

3.4. Jettability prediction
To further explore the conditions for stable jetting,
data was categorized into three classes: ‘no ejection’,
‘single drop’ and ‘multiple drops’. Only ‘single drop’
is desirable. Because literature data does not have a
clear indication of the jetting type, only data collected
in our lab was incorporated in building this model.
A three-layer DNN, a DT classifier with depth three
and a K-nearest neighbor classifier with two neigh-
bors are constructed and compared. All the classifiers
are trained on 80% of the data and validated with the
remaining test data (20%). The classification accur-
acy of these models for the test dataset is reported
in table 2. DNN outperforms the other models hav-
ing higher test accuracy. The confusionmatrix for the
best classifier (DNN) is shown in figure 9 as a demon-
stration of classification performance. The first type,
‘multiple drops’, is tested with 66 actual data points,
and the model accurately predicts 63. However, three
(2.42% of total) of them are incorrectly labeled as
‘single drop’. The next group, ‘no ejection’, consists
of 18 data points, of which two (1.61%) are classi-
fied erroneously. Out of 40 ‘single drop’ instances,
the model forecasts two (0.81%) as ‘no ejection’ and
four (3.23%) as ‘multiple drops’. This results in a
total misclassification error of 8.06%. A classification
report shows the categorizing performance of the

final prediction algorithm in terms of precision (P),
recall (R), f 1-score, and accuracy (A) as in equations
(8)–(11) for each group concerning four outcomes:
true positive (TP), true negative (TN), false positive
(FP), and false negative (FN)

P=
TP

TP + FP
(8)

R=
TP

TP+ FN
(9)

f1=
2PR

P+R
(10)

A=
TP+TN

TP+TN+ FP+ FN
. (11)

All of these metrics are calculated with the Scikit-
learn metrics package [44]. The report is shown in
table 3. Among these three classes, the ‘single drop’
class has the lowest scores because it can be misclas-
sified as either ‘no ejection’ or ‘multiple drops’. The
model does not misclassify ‘no ejection’ as ‘multiple
drops’ or vice versa as expected because these two
classes are on opposite ends of the parameter space.
Overall, these results demonstrate the good classific-
ation performance of the DNN.

3.5. Jetting window prediction
All the output results can be combined to forecast
a jetting window. In the inkjet printing literature,
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Table 3. Jetting classification report for DNN.

Precision Recall f 1-score Support

Multiple drop 0.94 0.95 0.94 66
No ejection 0.94 0.89 0.91 18
Single drop 0.88 0.88 0.88 40
Accuracy — — 0.91 124
Average 0.92 0.91 0.91 124

Figure 10. (a) Experimental data points plotted on jettability window for nine different materials. (b) Predicted jettability plot
created with the calculated We, Ca using predicted drop velocity from the Nelder–Mead weighted averaging model over the same
lab dataset. There are no ‘no ejection’ data points, as the plot is on a log-scale and log(0) is undefined for the ‘no ejection’ class
with zero velocity.

several types of windows have been proposed defined
by pairs of non-dimensional numbers combining
material parameters as well as drop velocity, such
as Weber number (We) and Capillary number (Ca)
defined by equations (12) and (13):

We=
Inertial Force

Surface Tension
=

ρV2d

γ
(12)

Ca=
Viscous Force

Surface Tension
=

µV

γ
(13)

where V is drop velocity, ρ is density, γ is surface ten-
sion, d is nozzle diameter, and µ is viscosity. Stable
jettable conditions (‘single drop’) are enclosed in a
window on a graph of two such non-dimensional
numbers, as shown in figure 10(a) for Ca–We. The
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shown window was taken from literature [27]. The
data points are from our experimental dataset. Each
material follows a straight line as expected. It can
be observed that our lab data generally falls into
the literature window as expected. However, there
are some data points with ‘multiple drops’ within
the pentagon-shaped jetting window, which should
only contain single drops, showing the limitations
of a simple window. ‘No ejection’ with zero velo-
city cannot be plotted because of the log scaling of
the Capillary and Weber axes, which both depend
on velocity. The challenge with using such jettabil-
ity windows is that data points can only be plotted
retroactively after drop velocity has been measured
experimentally. With the predictive model proposed
here, drop velocity and jettable conditions can be
predicted before conducting costly experiments, as
shown in figure 10(b). ‘Multiple drops’ prediction
generally occurs for large velocity values beyond the
‘single drop’ regime as expected. For toluene (on the
lower boundary line of the jettable region), the ‘single
drop’ and the ‘multiple drops’ prediction regions are
mixed for both real experimental data points and
points predicted by the model. The predicted jettab-
ility agrees well with experimental results.

4. Conclusion

Several ML models have been deployed successfully
to investigate the impact of electrical signals and
ink material properties on inkjet DoD drop velo-
city, volume, and jetting regime. Ensembles of DTs
(GB and RF) were applied to predict the drop velo-
city and radius of 14 materials. The observed RMSE
was 0.39 m s−1 and 2.12 µm respectively. The mean
absolute percentage error is 3.87%. A neural network
model was built to classify drop behavior as stable
‘single drop’, ‘multiple drops’, or ‘no ejection’. It can
predict the jetting category with 91.94% accuracy.
Themodels were validated with an untested graphene
oxide ink that was not part of the training dataset.
Theoretical jetting windows are not very accurate for
classifying the jetting type, and also require meas-
urement of drop velocity experimentally. The model
presented here can predict velocity accurately. There-
fore, it is possible to omit the experiment and ini-
tial jetting classification can be obtained from the sig-
nal and material features only. The predicted jetting
window will yield insights for the optimization of the
printing conditions and ink material design. In the
future, the dataset can be expanded by collecting data
for more printable materials to improve the model
accuracy.
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